Field effect transistor (FET) biosensor is based on metal oxide field effect transistor that is gated by changes in the surface charges induced the reaction of biomolecules. In most cases of FET biosensor, FET biosensor is not being reused after the reaction; therefore, it is an important concept of investigate the biosensor with simplicity, cheap and reusability. However, the conventional cardiac troponin I (cTnI) sensing technique is inadequate owing to its low sensitivity and high operational time and cost. In this study, we developed a rapid and low-cost, and disposable electrical sensor using an extended gate field-effect transistor (EGFET) to detect cTnI, as a key biomarker for myocardiac infarction. We first investigated pH sensing characteristics according to the pH level, which provided a logarithmically linear sensitivity in the pH sensing buffer solution of approximately 57.9 mV/pH. Subsequently, we prepared a cTnI sample and monitored the reaction between cTnI and cTnI antibodies through the changes in the drain current and transfer curves. Our results showed that the EGFET biosensor could successfully detect the cTnI levels as well as the pH with low-cost and rapid detection.
© Korean Society of Medical and Biological Engineering 2022.