Luminescence properties and energy transfer investigations of Ba2La2.85- x Tb0.15Eu x (SiO4)3F multicolor phosphor

RSC Adv. 2018 Jul 31;8(48):27332-27341. doi: 10.1039/c8ra04534h. eCollection 2018 Jul 30.

Abstract

The Ba2La2.85-x Tb0.15Eu x (SiO4)3F (BLSOF:0.15Tb3+, xEu3+) multicolor phosphors with apatite structure were synthesized via the solid-state pathway. The crystal structure and luminescence properties of the phosphors were investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Rietveld refinement, photoluminescence excitation (PLE) and photoluminescence (PL). The luminescence performance of the phosphor was optimum when the concentration of Tb3+ was set to be 0.15 mol and the concentration of Eu3+ was set to be 0.22 mol. Under the accurate excitation of 373 nm near ultraviolet (n-UV) light, the emitting color of the phosphors can be tuned from green to red with increasing Eu3+/Tb3+ ratio. It was further proved that the quadrupole-quadrupole (q-q) interaction is responsible for the energy transfer (ET) in the BLSOF:0.15Tb3+, 0.22Eu3+ phosphor. Owing to the excellent thermal quenching luminescence property, the BLSOF:0.15Tb3+, xEu3+ phosphor can be applied in n-UV white light emitting diodes (w-LEDs) and serve as the warm part of warm white light.