This study evaluated the effects of Erbium-doped yttrium aluminium garnet (Er:YAG) laser settings and dentin bonding agents on ultramorphological characteristics of resin-laser-irradiated dentin interfaces and dentin bond strength (BS) of these adhesive systems. Additionally, dentin depth affected by Er:YAG laser irradiations was measured. The experiments were performed on occlusal dentin surfaces of third molars that were flattened with 600-grit SiC sandpaper. Treated-dentin with laser settings (250 mJ/4 Hz and 160 mJ/10 Hz) were the experimental groups, while SiC abraded dentin was the control. These three dentin treatments and three adhesives (two self-etchings and one etch-&-rinse adhesive) formed nine groups for the ultramorphology of laser-ablated dentin-adhesives interfacial analysis, using a transmission electron microscope (TEM). For BS (n = 8), the same nine groups were tested with addition of the two evaluation times (24 h after sample preparation or 1 year). The depths of Er:YAG laser effects into the dentin were measured using a TEM (n = 10). Ablated-dentin depth and BS data were analyzed by one- and three-way ANOVA, respectively, and Tukey's test (α = 0.05). Hybrid layer formation was only observed for controls, while for laser-treated dentin, adhesives were bonded to dentin with resin tags formation. Laser settings reduced the BS for all adhesives at 24 h, while at 1 year, etch-&-rinse adhesive presented the highest BS, regardless treatment (control or laser settings). Dentin depth affected by laser settings was similar. The laser irradiation altered the bonding mechanism of the adhesives to dentin and reduced the BS for self-etching adhesives. Etch-&-rinse adhesive yielded the highest BS at 1 year. Laser settings similarly affected the dentin in depth. HIGHLIGHTS: Er:YAG laser irradiation settings produced similar effects on depth and bond strength to dentin. The etch-&-rinse adhesive yielded the highest dentin bond strength regardless of the type of dentin treatment at 1 year.
Keywords: Er:YAG laser; ablation; bond strength; dentin; dentin bonding agent.
© 2022 Wiley Periodicals LLC.