Osteoporosis is a common disease in elderly populations and is a major public health problem worldwide. It is not uncommon for spine surgeons to perform spinal instrumented fusion surgeries for osteoporotic patients. However, in patients with severe osteoporosis, instrumented fusion may result in screw loosening, implant failure or nonunion because of a poor bone quality and decreased pedicle screw stability as well as increased graft subsidence risk. In addition, revision surgeries to correct failed instrumentation are becoming increasingly common in patients with osteoporosis. Therefore, techniques to enhance the fixation of pedicle screws are required in spinal surgeries for osteoporotic patients. To date, various instrumentation methods, such as a supplemental hook, sublaminar taping and sacral alar iliac screws, and modified screwing techniques have been available for reinforcing pedicle screw fixation. In addition, several materials, including polymethylmethacrylate and hydroxyapatite stick/granules, for insertion into prepared screw holes, can be used to enhance screw fixation. Many biomechanical tests support the effectiveness of these augmentation methods. We herein review the current therapeutic strategies for screw fixation and augmentation methods in the surgical treatment of patients with an osteoporotic spine.
Keywords: augmentation; hydroxyapatite granules; minimally invasive spinal treatment; minimally invasive spine stabilization; osteoporosis; pedicle screw; percutaneous pedicle screw; screw loosening; spine; spine surgery.