Aliphatic isocyanates and polyisocyanates are central molecules in the fabrication of polyurethanes, coatings, and adhesives and, due to their excellent mechanical and stability properties, are continuously investigated in advanced applications; however, despite the growing interest in isocyanate-based systems, atomistic simulations on them have been limited by the lack of accurate parametrizations for these molecular species. In this review, we will first provide an overview of current research on isocyanate systems to highlight their most promising applications, especially in fields far from their typical usage, and to justify the need for further modeling works. Next, we will discuss the state of their modeling, from first-principle studies to atomistic molecular dynamics simulations and coarse-grained approaches, highlighting the recent advances in atomistic modeling. Finally, the most promising lines of research in the modeling of isocyanates are discussed in light of the possibilities opened by novel approaches, such as machine learning.
Keywords: aliphatic isocyanates; atomistic modeling; coarse-grained models; molecular dynamics.