SKN-1, the ortholog of mammalian Nrf2 proteins, is a transcription factor that plays an important role in oxidative stress resistance and longevity. Similar to other defense systems, the Nrf2-mediated stress response is compromised in aging and neurodegenerative diseases. Our previous studies demonstrated that tetramethylpyrazine nitrone (TBN), a derivative of tetramethylpyrazine armed with a potent free radical-scavenging nitrone moiety, exerted multifunctional neuroprotection in neurological and other diseases. However, the ability of TBN to extend a healthy lifespan and its underlying mechanisms of action are not yet clear. C. elegans have become a popular animal model in aging research. Herein, we demonstrate that TBN can extend the lifespan, promote age-associated health indicators, and restore mitochondrial function in C. elegans. TBN also significantly reduced ROS levels and superoxide accumulation in C. elegans. We show that TBN-mediated lifespan extension is SKN-1dependent. The present study provides valuable insights into the mechanisms by which TBN inhibits aging via the Nrf2/SKN-1 pathway in C. elegans.
Keywords: Aging; Lifespan; Mitochondrial function; Oxidative stress; SKN-1.
Copyright © 2022 Elsevier Inc. All rights reserved.