Hydrogen sulfide disrupts insulin-induced glucose uptake in L6 skeletal muscle cells

Food Chem Toxicol. 2022 Jul:165:113083. doi: 10.1016/j.fct.2022.113083. Epub 2022 May 13.

Abstract

Hydrogen sulfide (H2S) has been known for its toxicity. However, recent studies have focused on the mechanisms involved in endogenous production and function. To date, the H2S role in insulin signaling and glucose homeostasis is unclear. This uncertainty is even more evident in skeletal muscle, a physiological niche highly relevant for regulating glycemia in response to insulin. This study aimed to investigate the role of H2S on insulin signaling and glucose uptake in the L6 skeletal muscle cell line. We evaluated the endogenous synthesis with the fluorescent dye, 7-azido-4-methyl coumarin (7-AzMC). Glucose restriction-induced an increase in the endogenous levels of H2S, likely through stimulation of cystathionine γ-lyase activity, as its specific inhibitor, PAG (5 mM) prevented this increase, and mRNA levels of CSE decreased with glucose and amino acid restriction. Exogenous H2S reduced insulin-induced glucose uptake at 0.5 up to 24 h, an effect dissociated from the level of Akt phosphorylation. Our results show that glucose restriction induces endogenous production of H2S via CSE. In addition, H2S disrupts insulin-induced glucose uptake independent of the Akt pathway. These results suggest that H2S antagonism over insulin-induced glucose uptake could help maintain the plasmatic glucose levels in conditions that provoke hypoglycemia, which could serve as an H2S-regulated mechanism for maintaining glucose plasmatic levels through the inhibition of the skeletal muscle insulin-depended glucose uptake.

Keywords: Glucose uptake; Hydrogen sulfide; Insulin; Nutrient deprivation; Skeletal muscle.

MeSH terms

  • Cystathionine gamma-Lyase / genetics
  • Cystathionine gamma-Lyase / metabolism
  • Glucose / metabolism
  • Hydrogen Sulfide* / metabolism
  • Insulin / metabolism
  • Muscle Fibers, Skeletal / metabolism
  • Proto-Oncogene Proteins c-akt / genetics

Substances

  • Insulin
  • Proto-Oncogene Proteins c-akt
  • Cystathionine gamma-Lyase
  • Glucose
  • Hydrogen Sulfide