Upon infection, B lymphocytes develop clonal responses. In teleost fish, which lack lymph nodes, the kinetics and location of B cell responses remain poorly characterized. Fish pronephros is the site of B cell differentiation and the main niche for persistence of plasma cells. In this study, we undertook the analysis of the rainbow trout IgHμ repertoire in this critical tissue for humoral adaptive immunity after primary immunization and boost with a rhabdovirus, the viral hemorrhagic septicemia virus (VHSV). We used a barcoded 5' RACE-cDNA sequencing approach to characterize modifications of the IgHμ repertoire, including VH usage in expressed V(D)J rearrangements, clonal diversity, and clonotype sharing between individual fish and treatments. In the pronephros, our approach quantified the clonotype frequency across the whole IgH repertoire (i.e., with all VH), measuring the frequency of Ag-responding clonotypes. Viral infection led to extensive modifications of the pronephros B cell repertoire, implicating several VH subgroups after primary infection. In contrast, only modest changes in repertoire persisted 5 mo later, including VHSV-specific public expansions. The IgM public response implicating IgHV1-18 and JH5, previously described in spleen, was confirmed in pronephros in all infected fish, strongly correlated to the response. However, the distribution of top clonotypes showed that pronephros and spleen B cells constitute distinct compartments with different IgH repertoires. Unexpectedly, after boost, the frequency of anti-VHSV clonotypes decreased both in pronephros and spleen, raising questions about B cell circulation. A better monitoring of B cell response kinetics in lymphoid tissues will be an essential step to understand B memory and plasmocyte formation mechanisms in fish.
Copyright © 2022 by The American Association of Immunologists, Inc.