A detailed crystal structure analysis, temperature and field dependence of magnetic characteristics and phonon instabilities for different compositions (0.1 ⩽x⩽ 0.5) of Dy1-xCexCrO3solid-solutions have been reported. All the investigated compounds exhibit distorted orthorhombic crystal structure with a distortion factor ofdOct/dCell∼ 6 × 10-3/3.5 ppm (forx∼ 0.2) forPbnmspace group that follows Vegard's law. The bonds between apical oxygen atoms (OA1) and Cr atoms stand more rigidly in comparison with the basal oxygen atoms (OB1/OB2) resulting the octahedral distortion and thereby causing the changes in phonon modes. The CrO6octahedral tilt angleθrotates with respect to the Miller pseudocubic axis [101] which varies from 10.36° (x= 0.1) to 12.25° (x= 0.5) and significantly influences the Ag(5) phonon stability by 3% for a change in A-site mean radius from 1.095 Å to 1.141 Å forx= 0.1 and 0.5, respectively. From the magnetization measurements we find that these series of compositions exhibit canted antiferromagnetic (AFM) ordering with Néel temperature,TN1that increases from 151.8 K (x= 0.1) to 162 K (x= 0.5) which also manifests as a significant reduction in the magneto-crystalline anisotropy (HK∼ 2.58 kOe → 2.07 kOe,K1∼ 36.47 J m-3→ 18.97 J m-3) while maintaining the stable Γ4(Gx,Ay,Fz) AFM configuration. Both Dzyaloshinskii-Moriya interaction method and modified Curie-Weiss law are employed to analyse the inverse paramagnetic susceptibility,χ-1(T>TN1). Further, we have evaluated the symmetric (JS) and antisymmetric exchange (DAS) constants, which show progressively increasing trend (JS→ 10.08 K to 11.18 K andDAS→ 1.24 K to 1.73 K) with the incorporation of Ce inside the perovskite lattice. Furthermore, the role of Ce substitution on the low-temperature spin reorientation transition (TSR∼ 3.5 K → 16.8 K pertaining to the Γ25phase configuration) and emergence ofΓ2(Fx,Cy,Gz;FxR,CyR)weak-FM phase between 31 K and 45.5 K are discussed in consonance with the phonon spectra.
Keywords: antiferromagnetism; perovskites; spin reorientation transition.
© 2022 IOP Publishing Ltd.