Ideal imaging, which is constantly pursued, requires the collection of all kinds of optical information of the objects in view, such as three-dimensional spatial information (3D) including the planar distribution and depth, and the colors, i.e., spectral information (1D). Although three-dimensional spatial imaging and spectral imaging have individually evolved rapidly, their straightforward combination is a cumbersome system, severely hindering the practical applications of four-dimensional (4D) imaging. Here, we demonstrate the ultra-compact spectral light-field imaging (SLIM) by using a transversely dispersive metalens array and a monochrome imaging sensor. With only one snapshot, the SLIM presents advanced imaging with a 4 nm spectral resolution and near-diffraction-limit spatial resolution. Consequently, visually indistinguishable objects and materials can be discriminated through SLIM, which promotes significant progress towards ideal plenoptic imaging.
© 2022. The Author(s).