Chiral γ-branched aliphatic amines are present in a large number of pharmaceuticals and natural products. However, enantioselective methods to access these compounds are scarce and mainly rely on the use of designed chiral transition-metal complexes. Herein, we combined an organocatalytic method for the stereospecific isomerization of chiral allylic amines with a diastereoselective reduction of the chiral imine/enamine intermediates, leading to γ-trifluoromethylated aliphatic amines with two noncontiguous stereogenic centers, in excellent yields and high diastereo- and enantioselectivities. This approach has been used with primary amine substrates. This approach also provides a new synthetic pathway to chiral trifluoromethylated scaffolds, of importance in medicinal chemistry. Additionally, a gram-scale reaction demonstrates the applicability of this synthetic procedure.