Background and purpose: MRI images timely and accurately reflect ischemic injuries to the brain tissues and, therefore, can support clinical decision-making of acute ischemic stroke (AIS). To maximize the information provided by the MRI images, we leverage deep learning models to segment, classify, and map lesion distributions of AIS.
Methods: We evaluated brain MRI images of AIS patients from 2017 to 2020 at a tertiary teaching hospital and developed the Semantic Segmentation Guided Detector Network (SGD-Net), composed of the first U-shaped model for segmentation in diffusion-weighted imaging (DWI) and the second model for binary classification of lesion size (lacune vs. non-lacune) and circulatory territory of lesion location (anterior vs. posterior circulation). Next, we modified the two-stage deep learning model into SGD-Net Plus by automatically segmenting AIS lesions in DWI images and registering the lesion in T1-weighted images and the brain atlases.
Results: The final enrollment (216 patients with 4606 slices) was divided into 80% for model development and 20% for testing. S1 model segmented AIS lesions in DWI images accurately with a pixel accuracy > 99% (Dice 0.806-0.828 and IoU 0.675-707). In comprehensive evaluation of classification performance, the two-stage SGD-Net outperformed the traditional one-stage models in classifying AIS lesion size (accuracy 0.867-0.956 vs. 0.511-0.867, AUROC 0.962-0.992 vs. 0.528-0.937, AUPRC 0.964-0.994 vs. 0.549-0.938) and location (accuracy 0.860-0.930 vs. 0.326-0.721, AUROC 0.936-0.988 vs. 0.493-0.833, AUPRC 0.883-0.978 vs. 0.365-0.695). The precise lesion segmentation at the first stage of the deep learning model was the basis for further application. After that, the modified two-stage model SGD-Net Plus accurately reported the volume, region percentage, and lesion percentage of each region on the selected brain atlas. Its reports provided clear descriptions and quantifications of the AIS-related brain injuries on white matter tracts, Brodmann areas, and cytoarchitectonic areas.
Conclusion: Domain knowledge-oriented design of artificial intelligence applications can deepen our understanding of patients' conditions and strengthen the use of MRI for patient care. SGD-Net precisely segments AIS lesions on DWI and accurately classifies the lesions. In addition, SGD-Net Plus maps the AIS lesions and quantifies their occupancy in each brain region. They are practical tools to meet the clinical needs and enrich educational resources of neuroimage.
Keywords: Acute ischemic stroke; Diffusion-weighted imaging; Joint segmentation and classification; Lesion distribution and mapping; SGD-net; SGD-net plus.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.