One of the main clinical treatments for advanced nasopharyngeal carcinoma is chemotherapy, but systemic administration can cause serious adverse reactions. New type of nanomaterial which can actively targeting, imaging, and treating nasopharyngeal carcinoma at the same time to enhance the effect of chemotherapy, meanwhile monitoring the intracellular drug release process at the level of single cancer cell was urgently needed. GE11, an EGFR antagonist peptide, was used to target nasopharyngeal carcinoma which has positive expression of EGFR on its nucleus. GE11-modified graphene quantum dots (GQDs@GE11) were used as drug carriers for clinical chemotherapeutics cisplatin (CDDP) and doxorubicin (DOX). The emission spectrum of GQDs (460 nm) and the excitation spectrum of DOX (470 nm) have a good overlap, thus the transfer and release process of DOX can be sensitively detected by the fluorescence resonance energy transfer (FRET). CDDP was used to enhance the chemotherapy effect of nanoprobe, and the loading amount of DOX and CDDP on GQDs@GE11 nanoprobe were up to 67 and 50 mg/g, respectively. In vivo experiments have confirmed that GQDs@GE11/CDDP/DOX nanoprobe can be enriched to tumor site through specific targeting effect, and significantly inhibit tumor cell proliferation. This new type of targeted therapy fluorescent probe provides new ideas for the study of drug release process and the treatment of nasopharyngeal carcinoma.
Keywords: drug delivery; fluorescence resonance energy transfer; graphene quantum dots; nasopharyngeal cancer; tumor targeting.
© 2021 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.