Polymersomes as virus-surrogate particles for evaluating the performance of air filter materials

Giant (Oxf). 2022 Jun:10:100104. doi: 10.1016/j.giant.2022.100104. Epub 2022 May 18.

Abstract

The development of antivirus air filter materials has attracted considerable interests due to the pandemic of coronavirus disease 2019 (COVID-19). Filtration efficiency (FE) of these materials against virus is critical in the assessment of their use in disease prevention. Due to the high cost and biosafety laboratory required for conducting research using actual virus samples, surrogates for virus are commonly used in the filtration test. Here, we explore the employment of polymersomes (polymeric vesicles) as a new type of surrogate. The polymersomes are hollow shell nanoparticles with amphiphilic bilayer membranes, which can be fabricated in nanosized, and possess similar size and structural features to virus. The performance of commercial KN95 mask and surgical mask with micro-sized fibers, and electrospun polyvinylidene fluoride (PVDF) and polyacrylonitrile (PAN) nanofibers were chosen to be evaluated. The filtration tests against fluorescent-labeled virus-surrogate particles (VSPs), i.e. polymersomes, allowed the determination of the FE of the multilayered filter materials in a layer-specific manner. The results suggested the importance of hydrophobicity in designing the nanofibrous filter materials. The employment of VSPs in filtration performance evaluation allows a cost-effective way to estimate the FE against virus, providing guidance on future development of air filter materials.

Keywords: Air filter materials; Filtration efficiency; Polymersomes; Surrogate; Virus.