It is well established that neurodegenerative diseases known as tauopathies are characterized by the presence of filamentous forms of phosphorylated tau protein inside neurons. However, the causal relationship between the initial symptoms of a particular disease and the molecular events affecting tau and leading to the appearance of tangles of filamentous forms of this protein remains unknown. Even the main function (or functions) of tau inside neurons is debatable and controversial. Tau seems to be a multifunctional protein. I review here some of the most studied interactions of tau with different macromolecules and proteins, which can be classified according to the structural o functional unit within which the interaction works: Microtubule, Nuclear localization and DNA, Synaptic activity, RNA metabolism, Fats transport, Proteostasis, Amyloid Cascade Hypothesis, Mitochondria and Phosphorylation. Although this seems to be a broad spectrum of tau functions, interactome studies of tau reveal hundreds of plausible partners of tau, suggesting that it engages in an extensive network of interconnected regulatory interactions by means of its high capability to interact with all kinds of proteins and complex structures, combined with its vast number of post-translational modifications. I include also some thermodynamic data concerning the interaction of tau with some partners.
Keywords: Alzheimer; Parkinson; neurodegenerative diseases; protein interaction; tau; tauopathies.
Copyright © 2022 IBRO. Published by Elsevier Ltd. All rights reserved.