Rapid and accurate detection and serotyping of foot-and-mouth disease (FMD) virus (FMDV) is essential for implementing control policies against emergent FMD outbreaks. Current serotyping assays, such as VP1 reverse transcription-polymerase chain reaction (RT-PCR)/sequencing (VP1 RT-PCR/sequencing) and antigen detection enzyme-linked immunosorbent assay (ELISA), have problems with increasing serotyping failure of FMDVs from FMD outbreaks. This study was conducted to develop a multiplex real-time RT-PCR for specific detection and differential serotyping of FMDV serotype O, A, and Asia 1 directly from field clinical samples. Primers and probes were designed based on 571 VP1 coding region sequences originated from seven pools. Multiplex real-time RT-PCR using these primers and probes demonstrated serotype-specific detection with enhanced sensitivity compared to VP1 RT-PCR/sequencing for reference FMDV (n = 24). Complete serotyping conformity between the developed multiplex real-time RT-PCR and previous VP1 RT-PCR/sequencing was demonstrated using FMDV field viruses (n = 113) prepared in cell culture. For FMDV field clinical samples (n = 55), the serotyping rates of multiplex real-time RT-PCR and VP1 RT-PCR/sequencing were 92.7% (51/55) and 72.7% (40/55), respectively. Moreover, the developed multiplex real-time RT-PCR demonstrated improved FMDV detection (up to 33.3%) and serotyping (up to 67.7%) capabilities for saliva samples when compared with 3D real-time RT-PCR and VP1 RT-PCR/sequencing, during 10 days of challenge infection with FMDV serotype O, A, and Asia 1. Collectively, this study suggests that the newly developed multiplex real-time RT-PCR assay may be useful for the detection and differential serotyping of FMDV serotype O, A, and Asia 1 in the field.
Keywords: detection; foot-and-mouth disease; foot-and-mouth disease virus; multiplex; real-time reverse transcription-polymerase chain reaction; serotyping.
© 2022 The Authors. Transboundary and Emerging Diseases published by Wiley-VCH GmbH.