An in-house built hybrid manufacturing device, combining the pros of melt electrowriting (MEW) and melt electrospinning (MES), is firstly proposed to produce a reinforced nonwoven fabric applied in drug delivery systems. MEW is used to print regular PCL lattice, followed by the deposition of a PCL nonwoven fabric loaded with drugs, forming a MEW/MES composite scaffold. Tensile test results suggest that after combining with MEW lattice, the strength of the composite scaffold can have a two-fold improvement and the elongation to break can increase up to 900%. Solvent vapor annealing is applied to adjust drug release rate through controlling the crystallinity of PCL. Although the increased crystallinity restrained drug release, a shish-kebab-shaped fiber structure formed by the annealing facilitates drug release. This MEW-based hybrid printing method can greatly enhance the freedom of making complex scaffold and extend to other nanotechnologies to fabricate reinforced scaffold as well.
Keywords: 3D printing; Controlled drug release; Mechanical properties; Melt electrospinning.
Copyright © 2022 Elsevier Ltd. All rights reserved.