An extreme thermophile, Thermus thermophilus grows at an optimum temperature of around 70°C and produces 16 different polyamines including long-chain and branched-chain polyamines. We found that the composition of polyamines in the thermophile cells changes with culture temperature. Long-chain and branched-chain polyamines (unusual polyamines) were increased in the cells grown at high temperature such as 80°C, but they were minor components in the cells grown at relatively lower temperature such as 60°C. The effects of polyamines on cell growth were studied using T. thermophilus HB8 ΔspeA deficient in arginine decarboxylase. Cell growth of this mutant strain was significantly decreased at 70°C. This mutant strain cannot produce polyamines and grows poorly at 75°C. It was also determined whether polyamines are directly involved in protecting DNA from DNA double-strand breaks (DSBs) induced by heat. Polyamines protected DNA against double-strand breaks. Therefore, polyamines play essential roles in cell growth at extremely high temperature through maintaining a functional conformation of DNA against DSBs and depurination.
Keywords: Thermus thermophilus; DNA double-strand breaks; cell growth; high temperature; polyamine.
© The Author(s) 2022. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved. For permissions, please e-mail: [email protected].