Colloidal nanocrystal (NC) assemblies are promising for optoelectronic, photovoltaic, and thermoelectric applications. However, using these materials can be challenging in actual devices because they have a limited range of thermal conductivity and elastic modulus, which results in heat dissipation and mechanical robustness challenges. Here, we report thermal transport and mechanical measurements on single-domain colloidal PbS nanocrystal superlattices (NCSLs) that have long-range order as well as measurements on nanocrystal films (NCFs) that are comparatively disordered. Over an NC diameter range of 3.0-6.1 nm, we observe that NCSLs have thermal conductivities and Young's moduli that are up to ∼3 times higher than those of the corresponding NCFs. We also find that these properties are more sensitive to NC diameter in NCSLs relative to NCFs. Our measurements and computational modeling indicate that stronger ligand-ligand interactions due to enhanced ligand interdigitation and alignment in NCSLs account for the improved thermal transport and mechanical properties.
Keywords: ligands; mechanics; nanocrystal; superlattice; thermal transport.