DeepLUCIA: predicting tissue-specific chromatin loops using Deep Learning-based Universal Chromatin Interaction Annotator

Bioinformatics. 2022 Jul 11;38(14):3501-3512. doi: 10.1093/bioinformatics/btac373.

Abstract

Motivation: The importance of chromatin loops in gene regulation is broadly accepted. There are mainly two approaches to predict chromatin loops: transcription factor (TF) binding-dependent approach and genomic variation-based approach. However, neither of these approaches provides an adequate understanding of gene regulation in human tissues. To address this issue, we developed a deep learning-based chromatin loop prediction model called Deep Learning-based Universal Chromatin Interaction Annotator (DeepLUCIA).

Results: Although DeepLUCIA does not use TF binding profile data which previous TF binding-dependent methods critically rely on, its prediction accuracies are comparable to those of the previous TF binding-dependent methods. More importantly, DeepLUCIA enables the tissue-specific chromatin loop predictions from tissue-specific epigenomes that cannot be handled by genomic variation-based approach. We demonstrated the utility of the DeepLUCIA by predicting several novel target genes of SNPs identified in genome-wide association studies targeting Brugada syndrome, COVID-19 severity and age-related macular degeneration. Availability and implementation DeepLUCIA is freely available at https://github.com/bcbl-kaist/DeepLUCIA.

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19*
  • Chromatin
  • Deep Learning*
  • Genome-Wide Association Study
  • Genomics / methods
  • Humans

Substances

  • Chromatin