Rapid identification of lung-cancer micro-lesions is becoming increasingly important to improve the outcome of surgery by accurately defining the tumor/normal tissue margins and detecting tiny tumors, especially for patients with low lung function and early-stage cancer. The purpose of this study is to select and validate the best red fluorescent probe for rapid diagnosis of lung cancer by screening a library of 400 red fluorescent probes based on 2-methyl silicon rhodamine (2MeSiR) as the fluorescent scaffold, as well as to identify the target enzymes that activate the selected probe, and to confirm their expression in cancer cells. The selected probe, glutamine-alanine-2-methyl silicon rhodamine (QA-2MeSiR), showed 96.3% sensitivity and 85.2% specificity for visualization of lung cancer in surgically resected specimens within 10 min. In order to further reduce the background fluorescence while retaining the same side-chain structure, we modified QA-2MeSiR to obtain glutamine-alanine-2-methoxy silicon rhodamine (QA-2OMeSiR). This probe rapidly visualized even borderline lesions. Dipeptidyl peptidase 4 and puromycin-sensitive aminopeptidase were identified as enzymes mediating the cleavage and consequent fluorescence activation of QA-2OMeSiR, and it was confirmed that both enzymes are expressed in lung cancer. QA-2OMeSiR is a promising candidate for clinical application.
© 2022. The Author(s).