Synthesis of a Fluoromethacrylate Hydroxystyrene Block Copolymer Capable of Rapidly Forming Sub-5 nm Domains at Low Temperatures

ACS Macro Lett. 2019 Apr 16;8(4):368-373. doi: 10.1021/acsmacrolett.9b00178. Epub 2019 Mar 20.

Abstract

A series of poly(pentadecafluorooctyl methacrylate)-block-polyhydroxystyrene (PPDFMA-b-PHS) block copolymers (BCPs) were synthesized via reversible addition-fragmentation chain-transfer polymerization and subsequent deprotection. Because of the high incompatibility between hydroxyl groups and fluoro groups, the interaction parameter (χ) of these BCPs, determined by temperature-resolved small-angle X-ray scattering (SAXS), was extremely high. The χ value of PPDFMA-b-PHS was 0.48 at 150 °C, 16× larger than the χ of polystyrene-block-poly(methyl methacrylate). The microphase behavior of PPDFMA-b-PHS with various volume fractions of PHS block was determined by SAXS, yielding ordered lamellar morphologies with different sizes of domain spacing (d), and further confirmed by transmission electron microscopy. The minimum d obtained was 9.8 nm annealed at a mild temperature for a short time (80 °C for 1 min) by SAXS analysis, indicating the width of each lamellar domains was <5 nm.