Diabetes is a complicated multifactorial disorder in which the patient generally observes polyphagia, polydipsia, and polyuria due to uncontrolled growth in blood sugar levels. For its management, the pharmaceutical industry is working day and night to find a better drug with no or least toxicity. That's why nowadays a more focused branch is to use herbal phytoconstituents for its prevention. Shikonin is a naphthoquinone natural dye that is isolated from the plants of the Boraginaceae family and has proven its role as an anti-cancer, anti-inflammatory, and anti-gonadotrophic agent. In our previous study, we have published its anti-diabetic action by inhibiting the enzyme protein tyrosine phosphatase 1B. In this study, we were more focused on finding out the role of Shikonin and its pharmacophores by inhibiting the action of aldose reductase (AR) enzyme. The study was conducted using pharmacophore modeling, molecular docking, and molecular dynamics simulation studies. The absorption, distribution, metabolism, excretion (ADME), and toxicity profile were also evaluated in this study. Along with all the computational biology parameters we also focused on the in vitro activity and kinetic study of inhibitory activity of Shikonin against aldose reductase.
Keywords: ADME; Aldose reductase; Antidiabetic properties; Insilco approach; Shikonin.
Copyright © 2022 The Authors. Published by Elsevier Masson SAS.. All rights reserved.