Background: Hepatocellular carcinoma (HCC) is a highly malignant tumor with a very poor prognosis. Pyroptosis is an inflammatory form of cell death and plays an important role in cancer development. The prognostic value of pyroptosis-related genes (PRGs) in HCC has not been studied extensively.
Methods: Unsupervised consensus clustering analysis was performed to identify two subtypes based on the expression profiles of prognostic PRGs in the The Cancer Genome Atlas (TCGA) database, and the differences between the two subtypes were compared. A prognostic model based on four PRGs was established by further least absolute shrinkage and selection operator (LASSO) Cox regression analysis and multivariate Cox regression analysis.
Results: Two subtypes (clusters 1 and 2) were identified by consensus clustering based on prognostic PRGs in HCC. Survival outcomes, biological function, genomic alterations, immune cell infiltration, and immune checkpoint genes were compared between the subtypes. Cluster 2 had a worse survival outcome than cluster 1. Cluster 2 was enriched for hallmarks of cancer progression, TP53 mutation, tumor-promoting immune cells, and immune checkpoint genes, which may contribute to the poor prognosis. A prognostic risk signature that predicted the overall survival (OS) of patients was constructed and validated. Consequently, a risk score was calculated for each patient. Combined with the clinical characteristics, the risk score was found to be an independent prognostic factor for survival of HCC patients. Further analysis revealed that the risk score was closely associated with the levels of immune cell infiltration and the expression profiles of immune checkpoint genes.
Conclusions: Collectively, our study established a prognostic risk signature for HCC and revealed a significant correlation between pyroptosis and the HCC immune microenvironment.
Keywords: HCC; Immune checkpoint gene; Immune infiltrates; Prognosis; Pyroptosis.
© 2022. The Author(s).