Background: Bio-root regeneration is a promising treatment for tooth loss. It has been reported that dental-derived stem cells are effective seed cells for bio-root construction, but further applications are limited by their few sources. Human adipose tissues have a wide range of sources and numerous studies have confirmed the ability of adipose-derived stromal/stem cells (ASCs) in regenerative medicine. In the current study, the odontogenic capacities of ASCs were compared with dental-derived stem cells including dental follicle cells (DFCs), and stem cells from human exfoliated deciduous teeth (SHEDs).
Methods: The biological characteristics of ASCs, DFCs, and SHEDs were explored in vitro. Two-dimensional (2D) and three-dimensional (3D) cultures were compared in vitro. Odontogenic characteristics of porcine-treated dentin matrix (pTDM) induced cells under a 3D microenvironment in vitro were compared. The complexes (cell/pTDM) were transplanted subcutaneously into nude mice to verify regenerative potential. RNA sequencing (RNA-seq) was used to explore molecular mechanisms of different seed cells in bio-root regeneration.
Results: 3D culture was more efficient in constructing bio-root complexes. ASCs exhibited good biological characteristics similar to dental-derived stem cells in vitro. Besides, pTDM induced ASCs presented odontogenic ability similar to dental-derived stem cells. Furthermore, 3D cultured ASCs/pTDM complex promoted regeneration of dentin-like, pulp-like, and periodontal fiber-like tissues in vivo. Analysis indicated that PI3K-Akt, VEGF signaling pathways may play key roles in the process of inducing ASCs odontogenic differentiation by pTDM.
Conclusions: ASCs are potential seed cells for pTDM-induced bio-root regeneration, providing a basis for further research and application.
Keywords: Adipose-derived stromal/stem cells; Bio-root regeneration; Dental follicle cells; Porcine treated cellular dentin matrix; Stem cells from human exfoliated deciduous teeth.
© 2022. The Author(s).