Impaired autophagy is an important cause of Mycobacterium tuberculosis survival in macrophages. VPS11 is an important regulator of autophagy; decreased VPS11 expression has been observed in macrophages after tuberculosis (TB) infection. Gene ontology data revealed that various miRNAs (for example, miR-542-3p) were upregulated in macrophages upon TB infection; thus, these miRNAs were likely to reduce VPS11 expression. In this study, both TB patients and healthy subjects were enrolled, and the levels of VPS11 and some miRNAs in their blood macrophages were measured. Moreover, various macrophages were cultured and infected with M. tuberculosis. Luciferase reporter, RNA pulldown, and RNA immunoprecipitation assays were performed to determine the regulatory effect of miR-542-3p on VPS11 expression. Results showed that VPS11 expression was downregulated, whereas miR-542-3p expression was upregulated in blood macrophages after TB infection. TB infection reduced VPS11 levels in two human macrophages in vitro, but not in mouse macrophages. This might be because the seed sequence exists in the VPS11 3' untranslated region in humans, but is absent in mice and rats. miR-542-3p promoted M. tuberculosis survival in human macrophages, but VPS11 overexpression antagonized the promoting effect of miR-542-3p. Further, VPS11 was confirmed as a target of miR-542-3p. Overexpression of VPS11 or depletion of miR-542-3p promoted autophagy, which was suppressed upon TB infection. In summary, VPS11 overexpression antagonized the promoting effect of miR-542-3p on M. tuberculosis survival in macrophages by regulating autophagy.
Keywords: Autophagy; Macrophages; Tuberculosis; VPS11; miR-542-3p.
Copyright © 2022 Elsevier Ltd. All rights reserved.