Mutation detection is of major interest in molecular diagnostics, especially in the field of oncology. However, detection can be challenging as mutant alleles often coexist with excess copies of wild-type alleles. Bridged nucleic acid (BNA)-clamp PCR circumvents this challenge by preferentially suppressing the amplification of wild-type alleles and enriching rare mutant alleles. In this study, we screened cationic copolymers containing nonionic and anionic repeat units for their ability to (i) increase the Tm of double-stranded DNA, (ii) avoid PCR inhibition, and (iii) enhance the suppression of wild-type amplification in BNA-clamp PCR to detect the KRAS G13D mutation. The selected copolymers that met these criteria consisted of four types of amines and anionic and/or nonionic units. In BNA-clamp PCR, these copolymers increased the threshold cycle (C t) of the wild-type allele only and enabled mutation detection from templates with a 0.01% mutant-to-wild-type ratio. Melting curve analysis with 11-mer DNA-DNA or BNA-DNA complementary strands showed that these copolymers preferentially increased the Tm of perfectly matched strands over strands containing 1-bp mismatches. These results suggested that these copolymers preferentially stabilize perfectly matched DNA and BNA strands and thereby enhance rare mutant detection in BNA-clamp PCR.
Keywords: DNA melting temperature; PCR clamping; bridged nucleic acid; cationic copolymers; mutant detection; rare allele enrichment.
© The Author(s) 2022. Published by Oxford University Press.