Genetic perturbances in translational regulation result in defects in cerebellar motor learning; however, little is known about the role of translational mechanisms in the regulation of cerebellar plasticity. We show that genetic removal of 4E-BP, a translational suppressor and target of mammalian target of rapamycin complex 1, results in a striking change in cerebellar synaptic plasticity. We find that cerebellar long-term depression (LTD) at parallel fiber-Purkinje cell synapses is converted to long-term potentiation in 4E-BP knockout mice. Biochemical and pharmacological experiments suggest that increased phosphatase activity largely accounts for the defects in LTD. Our results point to a model in which translational regulation through the action of 4E-BP plays a critical role in establishing the appropriate kinase/phosphatase balance required for normal synaptic plasticity in the cerebellum.
Keywords: 4E-BP; CP: Neuroscience; LTD; PP2A; Purkinje cells; autism; cerebellum; mTOR; phosphatase kinase balance; synaptic plasticity; translation.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.