CRISPR Modeling and Correction of Cardiovascular Disease

Circ Res. 2022 Jun 10;130(12):1827-1850. doi: 10.1161/CIRCRESAHA.122.320496. Epub 2022 Jun 9.

Abstract

Cardiovascular disease remains the leading cause of morbidity and mortality in the developed world. In recent decades, extraordinary effort has been devoted to defining the molecular and pathophysiological characteristics of the diseased heart and vasculature. Mouse models have been especially powerful in illuminating the complex signaling pathways, genetic and epigenetic regulatory circuits, and multicellular interactions that underlie cardiovascular disease. The advent of CRISPR genome editing has ushered in a new era of cardiovascular research and possibilities for genetic correction of disease. Next-generation sequencing technologies have greatly accelerated the identification of disease-causing mutations, and advances in gene editing have enabled the rapid modeling of these mutations in mice and patient-derived induced pluripotent stem cells. The ability to correct the genetic drivers of cardiovascular disease through delivery of gene editing components in vivo, while still facing challenges, represents an exciting therapeutic frontier. In this review, we provide an overview of cardiovascular disease mechanisms and the potential applications of CRISPR genome editing for disease modeling and correction. We also discuss the extent to which mice can faithfully model cardiovascular disease and the opportunities and challenges that lie ahead.

Keywords: adeno-associated virus; cardiomyopathies; gene editing; induced pluripotent stem cells Cas9.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CRISPR-Cas Systems
  • Cardiovascular Diseases* / genetics
  • Cardiovascular Diseases* / therapy
  • Clustered Regularly Interspaced Short Palindromic Repeats
  • Gene Editing
  • Humans
  • Induced Pluripotent Stem Cells*
  • Mice