Shared and specialized coding across posterior cortical areas for dynamic navigation decisions

Neuron. 2022 Aug 3;110(15):2484-2502.e16. doi: 10.1016/j.neuron.2022.05.012. Epub 2022 Jun 8.

Abstract

Animals adaptively integrate sensation, planning, and action to navigate toward goal locations in ever-changing environments, but the functional organization of cortex supporting these processes remains unclear. We characterized encoding in approximately 90,000 neurons across the mouse posterior cortex during a virtual navigation task with rule switching. The encoding of task and behavioral variables was highly distributed across cortical areas but differed in magnitude, resulting in three spatial gradients for visual cue, spatial position plus dynamics of choice formation, and locomotion, with peaks respectively in visual, retrosplenial, and parietal cortices. Surprisingly, the conjunctive encoding of these variables in single neurons was similar throughout the posterior cortex, creating high-dimensional representations in all areas instead of revealing computations specialized for each area. We propose that, for guiding navigation decisions, the posterior cortex operates in parallel rather than hierarchically, and collectively generates a state representation of the behavior and environment, with each area specialized in handling distinct information modalities.

Keywords: calcium imaging; conjunctive coding; cortical organization; decision-making; navigation; parietal cortex; population coding; representational geometry; retrosplenial cortex; virtual reality.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Locomotion / physiology
  • Mice
  • Neocortex*
  • Neurons / physiology
  • Parietal Lobe / physiology
  • Spatial Navigation* / physiology