The dental practice has largely evolved in the last 50 years following a better understanding of the biomechanical behaviour of teeth and its supporting structures, as well as developments in the fields of imaging and biomaterials. However, many patients still encounter treatment failures; this is related to the complex nature of evaluating the biomechanical aspects of each clinical situation due to the numerous patient-specific parameters, such as occlusion and root anatomy. In parallel, the advent of cone beam computed tomography enabled researchers in the field of odontology as well as clinicians to gather and model patient data with sufficient accuracy using image processing and finite element technologies. These developments gave rise to a new precision medicine concept that proposes to individually assess anatomical and biomechanical characteristics and adapt treatment options accordingly. While this approach is already applied in maxillofacial surgery, its implementation in dentistry is still restricted. However, recent advancements in artificial intelligence make it possible to automate several parts of the laborious modelling task, bringing such user-assisted decision-support tools closer to both clinicians and researchers. Therefore, the present narrative review aimed to present and discuss the current literature investigating patient-specific modelling in dentistry, its state-of-the-art applications, and research perspectives.
Keywords: Decision-making; Dental stress analysis; Finite element analysis; Oral diagnosis; Patient-specific modelling; Precision medicine.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.