Many studies suggest that species diversity and abiotic factors promote ecosystem multifunctionality. However, whether ecosystem multifunctionality is impacted by phylogenetic diversity remains controversial. The present study tested this in an arid desert ecosystem in Ebinur Lake Basin using soil C:N ratio, soil pH, and soil salinity as abiotic factors, and species diversity and phylogenetic diversity as indicators of plant diversity. The effects of plant diversity and abiotic factors on single ecosystem functions (nutrient cycling, carbon stocks, water regulation, and wood production) and ecosystem multifunctionality were studied. We used structural equation modeling to assess the relationships among different functional groups and factors. The results showed that: (1) abiotic factors, particularly pH and C:N ratio in soil, had the strongest positive impact on multifunctionality (P < 0.001). The phylogenetic diversity and species diversity showed inconsistent changes, and their contribution to multifunctionality were not outstanding. (2) Abiotic factors were closely related to different ecosystem functions. Soil C:N had a significant positive effect on carbon stocks (P < 0.001), with an effect index of 0.89. Soil pH significantly enhanced nutrient cycling and water regulation. The role of plant diversity varied with the combination of different ecosystem functions. Phylogenetic diversity and species diversity influenced wood production, but showed opposite functions. (3) The importance of four single-ecosystem functions in an arid region was ranked as follows: carbon stocks > water regulation > nutrient cycling > wood production, emphasizing the importance of carbon elements in these ecosystems. These results improve our understanding of the drivers of multifunctionality in arid ecosystems, facilitating the elucidation of the influence of abiotic factors and phylogenetic diversity.