The present study was undertaken to biosynthesize zinc oxide nanoparticles (ZnONPs) using a mangrove-associated actinobacterium Streptomyces olivaceus (MSU3) under in vitro conditions. The synthesized ZnONPs were structurally characterized through UV, FT-IR, TG-DTA, XRD, SEM and EDX analysis. Analysis of biosynthesized ZnONPs in UV-Vis spectroscopy showed presence of functional groups between the wavelengths 325 and 380 nm. FT-IR analysis showed the functional groups, such as halo bromide (C-Br), alkyne (C≡C), carboxylic acid (O-H), nitro (N-O), fluoro (C-F), alkene (C=C) and aromatic (R-C-H) groups, respectively, within the wave numbers between 614.30 and 3074.41 cm-1. The crystalline poly-dispersed quasi spherical nature of ZnONPs expressed the average particle size of 37.9 nm with the 2θ values of 11.802-37.885°. Antibacterial activity of ZnONPs showed pronounced inhibitory zone (25 mm) and least MIC and MBC values (125 and 250 µg ml-1) against Escherchia sp. In the antifouling study, ZnONPs strongly inhibited byssal thread formation in mussel Perna indica and recorded LC50 value of 424.47 µg ml-1. Mollusc foot adherence assay inferred that the ZnONPs effectively inhibited settlement of limpet Patella vulgata and showed minimal fouling (26.43%) at 350 µg ml-1 and recorded LC50 value of 218.77 µg ml-1. Results of anticrustacean assay depicted that, ZnONPs had registered LC50 value of 676.08 µg ml-1 against Artemia salina nauplii. From this study, it could be concluded that an eco-friendly approach could be used to open a new avenue for biosynthesis of ZnONPs from a mangrove associated actinobacterium S. olivaceus (MSU3) in antifouling studies.
Keywords: Antibacterial activity; Antifouling property; Streptomyces sp.; Zinc oxide nanoparticles.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.