Rapid and high-throughput testing of antifungal susceptibility using an AIEgen-based analytical system

Biomaterials. 2022 Aug:287:121618. doi: 10.1016/j.biomaterials.2022.121618. Epub 2022 Jun 4.

Abstract

The increasing resistance among fungi to antimicrobials are posing global threats to health. Early treatment with appropriate antifungal drugs guided by the antifungal susceptibility testing (AFST) can dramatically reduce the mortality of severe fungal infections. However, the long test time (24-48 h) of the standard AFSTs cannot provide timely results due to the slow growth of the pathogen. Herein, we report a new AFST that is independent of growth rate analysis using a luminogen with aggregation-induced emission characteristics (AIEgen) named DMASP. DMASP is a water-soluble small-molecule probe that can readily penetrate the dense fungal cell wall. Based on its mitochondria-targeting ability and AIE characteristics, fungal activity can be dynamically indicated via real-time fluorescence monitoring. This allows fungal susceptibility to various antimicrobials to be assessed within 12 h in a wash-free, one-step manner. This method may serve as a promising tool to rapidly detect possible drug-resistant fungal strain and guide the precise use of antimicrobial against fungal diseases.

Keywords: Aggregation-induced emission; Antifungal susceptibility testing; Fluorescence probe; Fungal infection.