Previously we have found that TabZIP60 from the ABF/AREB (ABRE-binding factor/ABA-responsive element-binding protein) subfamily of bZIP transcription factor (TF) was involved in salt stress response. However, the regulatory mechanism of TabZIP60 is unknown. In the present study, we identified two calcium-dependent protein kinase (CDPK) genes, TaCDPK5/TaCDPK9-1, which were clustered into group Ⅰ and were induced by salt, abscisic acid (ABA), and polyethylene glycol (PEG) treatments. RT-qPCR results showed that the expression level of salt-induced TabZIP60 was drastically inhibited by Ca2+ channel blocker LaCl3. TaCDPK5/TaCDPK9-1 were involved in interaction with TabZIP60 protein in vivo and in vitro. And TaCDPK5/TaCDPK9-1 could autophosphorylate and phosphorylate TabZIP60 protein in a Ca2+-dependent way. Mutational analysis indicated that Serine-110 of TabZIP60 was essential for TaCDPK5/TaCDPK9-1-TabZIP60 interaction and was the phosphorylation site of TaCDPK5/TaCDPK9-1 kinases. Yeast two-hybrid assay results showed the interactions between TaCDPK5/TaCDPK9-1 and wheat protein phosphatase 2 C clade A TaPP2CA116/ TaPP2CA121 separately. These findings demonstrate that the phosphorylation status of TabZIP60 controlled by TaPP2CA116/ TaPP2CA121 and TaCDPK5/TaCDPK9-1 might play a crucial role in wheat during salt stress.
Keywords: Phosphorylation; TaCDPK5/TaCDPK9–1; TaPP2CA116/ TaPP2CA 121; TabZIP60 TF; Wheat.
Copyright © 2022 Elsevier B.V. All rights reserved.