Predicting materials properties of nuclear fuel compounds is a challenging task in materials science. Their thermodynamical behaviors around and above the operational temperature are essential for the design of nuclear reactors. However, they are not easy to measure, because the target temperature range is too high to perform various standard experiments safely and accurately. Moreover, theoretical methods such as first-principles calculations also suffer from the computational limitations in calculating thermodynamical properties due to their high calculation-costs and complicated electronic structures stemming from f-orbital occupations of valence electrons in actinide elements. Here, we demonstrate, for the first time, machine-learning molecular-dynamics to theoretically explore high-temperature thermodynamical properties of a nuclear fuel material, thorium dioxide. The target compound satisfies first-principles calculation accuracy because f-electron occupation coincidentally diminishes and the scheme meets sampling sufficiency because it works at the computational cost of classical molecular-dynamics levels. We prepare a set of training data using first-principles molecular dynamics with small number of atoms, which cannot directly evaluate thermodynamical properties but captures essential atomistic dynamics at the high temperature range. Then, we construct a machine-learning molecular-dynamics potential and carry out large-scale molecular-dynamics calculations. Consequently, we successfully access two kinds of thermodynamic phase transitions, namely the melting and the anomalous [Formula: see text] transition induced by large diffusions of oxygen atoms. Furthermore, we quantitatively reproduce various experimental data in the best agreement manner by selecting a density functional scheme known as SCAN. Our results suggest that the present scale-up simulation-scheme using machine-learning techniques opens up a new pathway on theoretical studies of not only nuclear fuel compounds, but also a variety of similar materials that contain both heavy and light elements, like thorium dioxide.
© 2022. The Author(s).