A photonic integrated circuit-based erbium-doped amplifier

Science. 2022 Jun 17;376(6599):1309-1313. doi: 10.1126/science.abo2631. Epub 2022 Jun 16.

Abstract

Erbium-doped fiber amplifiers revolutionized long-haul optical communications and laser technology. Erbium ions could provide a basis for efficient optical amplification in photonic integrated circuits but their use remains impractical as a result of insufficient output power. We demonstrate a photonic integrated circuit-based erbium amplifier reaching 145 milliwatts of output power and more than 30 decibels of small-signal gain-on par with commercial fiber amplifiers and surpassing state-of-the-art III-V heterogeneously integrated semiconductor amplifiers. We apply ion implantation to ultralow-loss silicon nitride (Si3N4) photonic integrated circuits, which are able to increase the soliton microcomb output power by 100 times, achieving power requirements for low-noise photonic microwave generation and wavelength-division multiplexing optical communications. Endowing Si3N4 photonic integrated circuits with gain enables the miniaturization of various fiber-based devices such as high-pulse-energy femtosecond mode-locked lasers.

Publication types

  • Research Support, Non-U.S. Gov't