Digital droplet PCR (ddPCR) is an implementation of conventional PCR, with the potential of overcoming some limitations of real-time quantitative PCR (RQ-PCR). To evaluate if ddPCR may improve the quantification of disease levels and refine patients' risk stratification, 116 samples at four time points from 44 (35 B-lineage and 9 T-lineage) adult Philadelphia-negative acute lymphoblastic leukemia patients enrolled in the GIMEMA LAL1913 protocol were analyzed by RQ-PCR and ddPCR. A concordance rate between RQ-PCR and ddPCR of 79% (P < 0.0001) was observed; discordances were identified in 21% of samples, with the majority being RQ-PCR-negative (NEG) or positive not quantifiable (PNQ). ddPCR significantly reduced the proportion of PNQ samples-2.6% versus 14% (P = 0.003)-and allowed disease quantifiability in 6.6% of RQ-PCR-NEG, increasing minimal residual disease quantification in 14% of samples. Forty-seven samples were also investigated by next-generation sequencing, which confirmed the ddPCR results in samples classified as RQ-PCR-PNQ or NEG. By reclassifying samples on the basis of the ddPCR results, a better event-free survival stratification of patients was observed compared to RQ-PCR; indeed, ddPCR captured more true-quantifiable samples, with five relapses occurring in three patients who resulted RQ-PCR-PNQ/NEG but proved ddPCR positive quantifiable. At variance, no relapses were recorded in patients whose follow-up samples were RQ-PCR-PNQ but reclassified as ddPCR-NEG. A broader application of ddPCR in acute lymphoblastic leukemia clinical trials will help to improve patients' stratification.
Copyright © 2022 Association for Molecular Pathology and American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.