Background: Patients with unresectable recurrent rectal cancer (RRC) or colorectal cancer (CRC) with liver metastases, refractory to at least two lines of traditional systemic therapy, may receive third line intraarterial chemotherapy (IC) and targeted therapy (TT) using drugs selected by chemosensitivity and tumor gene expression analyses of liquid biopsy-derived circulating tumor cells (CTCs).
Methods: In this retrospective study, 36 patients with refractory unresectable RRC or refractory unresectable CRC liver metastases were submitted for IC and TT with agents selected by precision oncotherapy chemosensitivity assays performed on liquid biopsy-derived CTCs, transiently cultured in vitro, and by tumor gene expression in the same CTC population, as a ratio to tumor gene expression in peripheral mononuclear blood cells (PMBCs) from the same individual. The endpoint was to evaluate the predictive accuracy of a specific liquid biopsy precision oncotherapy CTC purification and in vitro culture methodology for a positive RECIST 1.1 response to the therapy selected.
Results: Our analyses resulted in evaluations of 94.12% (95% CI 0.71-0.99) for sensitivity, 5.26% (95% CI 0.01-0.26) for specificity, a predictive value of 47.06% (95% CI 0.29-0.65) for a positive response, a predictive value of 50% (95% CI 0.01-0.98) for a negative response, with an overall calculated predictive accuracy of 47.22% (95% CI 0.30-0.64).
Conclusions: This is the first reported estimation of predictive accuracy derived from combining chemosensitivity and tumor gene expression analyses on liquid biopsy-derived CTCs, transiently cultured in vitro which, despite limitations, represents a baseline and benchmark which we envisage will be improve upon by methodological and technological advances and future clinical trials.
Keywords: Chemosensitivity tests; Circulating tumor cells; Colorectal cancer liver metastases; Intraarterial chemotherapy; Liquid biopsies; Precision oncotherapy; Predictive accuracy; Recurrent rectal cancer; Targeted therapy; Tumor gene expressions analyses.
© 2022. The Author(s).