The blockade of A2A adenosine receptor (A2AAR) activates immunostimulatory response through regulating signaling in tumor microenvironment. Thus, A2AAR has been proposed as a promising target for cancer immunotherapy. In this work, we designed a new series of benzo[4,5]imidazo[1,2-a]pyrazin-1-amine derivatives bearing an amide substitution at 3-position to obtain potent antitumor antagonist in vivo. The structure-activity relationship studies were performed by molecular modeling and radioactive assay. The in vitro anticancer activities were evaluated by 3',5'-cyclic adenosine monophosphate (cAMP) functional and T cell activation assay. The most potent compound 12o·2HCl showed much higher affinity toward A2AAR (Ki = 0.08 nM) and exhibited more significant in vitro immunostimulatory anticancer activity than clinical antagonist AZD4635. More importantly, 12o·2HCl significantly inhibited the growth of triple-negative breast cancer by reversing immunosuppressive tumor microenvironment in the xenograft mouse model without severe toxicity at the testing dose. These results make 12o·2HCl a promising immunotherapy anticancer drug candidate.