The first rhodium-catalyzed highly chemo-, regio- and enantioselective hydroformylation of cyclopropyl-functionalized trisubstituted alkenes affording useful chiral cyclopropyl entities is reported. Compared to generally used diphosphine ligands for asymmetric catalysis, the modified hybrid phosphorus ligand, named (R,S)-DTBM-Yanphos, can convert a series of readily available cyclopropyl-functionalized trisubstituted alkenes into high-value chiral cyclopropyl-functionalized aldehydes with high selectivities (81-98 % ee). Gram-scale reactions (TON up to 1500) and follow-up transformations to the corresponding alcohol, acid, esters and nitrile are also presented. Finally, a possible hydroformylation mechanism involving ring-open-hydroformylation pathways is proposed based on control and deuteroformylation reactions.
Keywords: Enantioselective; Hydroformylation; Regioselective; Rhodium; Trisubstituted Alkenes.
© 2022 Wiley-VCH GmbH.