Proteogenomic characterization of cholangiocarcinoma

Hepatology. 2023 Feb 1;77(2):411-429. doi: 10.1002/hep.32624. Epub 2022 Jul 5.

Abstract

Background and aims: Cholangiocarcinoma (CCA) is a highly heterogeneous cancer with limited understanding and few effective therapeutic approaches. We aimed at providing a proteogenomic CCA characterization to inform biological processes and treatment vulnerabilities.

Approach and results: Integrative genomic analysis with functional validation uncovered biological perturbations downstream of driver events including DPCR1 , RBM47 mutations, SH3BGRL2 copy number alterations, and FGFR2 fusions in CCA. Proteomic clustering identified three subtypes with distinct clinical outcomes, molecular features, and potential therapeutics. Phosphoproteomics characterized targetable kinases in CCA, suggesting strategies for effective treatment with CDK and MAPK inhibitors. Patients with CCA with HBV infection showed increased antigen processing and presentation (APC) and T cell infiltration, conferring a favorable prognosis compared with those without HBV infection. The characterization of extrahepatic CCA recommended the feasible application of vascular endothelial-derived growth factor inhibitors. Multiomics profiling presented distinctive molecular characteristics of the large bile duct and the small bile duct of intrahepatic CCA. The immune landscape further revealed diverse tumor immune microenvironments, suggesting immune subtypes C1 and C5 might benefit from immune checkpoint therapy. TCN1 was identified as a potential CCA prognostic biomarker, promoting cell growth by enhancing vitamin B12 metabolism.

Conclusions: We characterized the proteogenomic landscape of 217 CCAs with 197 paired normal adjacent tissues and identified their subtypes and potential therapeutic targets. The multiomics analyses with other databases and some functional validations have indicated strategies regarding the clinical, biological, and therapeutic approaches to the management of CCA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bile Duct Neoplasms* / drug therapy
  • Bile Duct Neoplasms* / genetics
  • Bile Duct Neoplasms* / pathology
  • Bile Ducts, Intrahepatic / pathology
  • Carrier Proteins
  • Cholangiocarcinoma* / drug therapy
  • Cholangiocarcinoma* / genetics
  • Cholangiocarcinoma* / pathology
  • Humans
  • Proteogenomics*
  • Proteomics
  • RNA-Binding Proteins
  • Tumor Microenvironment

Substances

  • SH3BGRL2 protein, human
  • Carrier Proteins
  • RBM47 protein, human
  • RNA-Binding Proteins