We contribute a research agenda for visualization in motion and two experiments to understand how well viewers can read data from moving visualizations. We define visualizations in motion as visual data representations that are used in contexts that exhibit relative motion between a viewer and an entire visualization. Sports analytics, video games, wearable devices, or data physicalizations are example contexts that involve different types of relative motion between a viewer and a visualization. To analyze the opportunities and challenges for designing visualization in motion, we show example scenarios and outline a first research agenda. Motivated primarily by the prevalence of and opportunities for visualizations in sports and video games we started to investigate a small aspect of our research agenda: the impact of two important characteristics of motion-speed and trajectory on a stationary viewer's ability to read data from moving donut and bar charts. We found that increasing speed and trajectory complexity did negatively affect the accuracy of reading values from the charts and that bar charts were more negatively impacted. In practice, however, this impact was small: both charts were still read fairly accurately.