To investigate the stability changes of brain functional architecture and the relationship between stability change and cognitive impairment in cirrhotic patients. Fifty-one cirrhotic patients (21 with minimal hepatic encephalopathy (MHE) and 30 without MHE (NHE)) and 29 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging and neurocognitive assessment using the Psychometric Hepatic Encephalopathy Score (PHES). Voxel-wise functional connectivity density (FCD) was calculated as the sum of connectivity strength between one voxel and others within the entire brain. The sliding window correlation approach was subsequently utilized to calculate the FCD dynamics over time. Functional stability (FS) is measured as the concordance of dynamic FCD. From HCs to the NHE and MHE groups, a stepwise reduction of FS was found in the right supramarginal gyrus (RSMG), right middle cingulate cortex, left superior frontal gyrus, and bilateral posterior cingulate cortex (BPCC), whereas a progressive increment of FS was observed in the left middle occipital gyrus (LMOG) and right temporal pole (RTP). The mean FS values in RSMG/LMOG/RTP (r = 0.470 and P = 0.001; r = -0.458 and P = 0.001; and r = -0.384 and P = 0.005, respectively) showed a correlation with PHES in cirrhotic patients. The FS index in RSMG/LMOG/BPCC/RTP showed moderate discrimination potential between the NHE and MHE groups. Changes in FS may be linked to neuropathological bias of cognitive impairment in cirrhotic patients and could serve as potential biomarkers for MHE diagnosis and monitoring the progression of hepatic encephalopathy.
Keywords: Dynamic functional connectivity; Functional magnetic resonance imaging; Functional stability; Minimal hepatic encephalopathy; Resting state.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.