Objectives: To develop and validate a prostate cancer (PCa) risk calculator (RC) incorporating multiparametric magnetic resonance imaging (mpMRI) and to compare its performance with that of the Prostate Biopsy Collaborative Group (PBCG) RC.
Patients and methods: Men without a PCa diagnosis receiving mpMRI before biopsy in the Prospective Loyola University mpMRI (PLUM) Prostate Biopsy Cohort (2015-2020) were included. Data from a separate institution were used for external validation. The primary outcome was diagnosis of no cancer, grade group (GG)1 PCa, and clinically significant (cs)PCa (≥GG2). Binary logistic regression was used to explore standard clinical and mpMRI variables (prostate volume, Prostate Imaging-Reporting Data System [PI-RADS] version 2.0 lesions) with the final PLUM RC, based on a multinomial logistic regression model. Receiver-operating characteristic curve, calibration curves, and decision-curve analysis were evaluated in the training and validation cohorts.
Results: A total of 1010 patients were included for development (N = 674 training [47.8% PCa, 30.9% csPCa], N = 336 internal validation) and 371 for external validation. The PLUM RC outperformed the PBCG RC in the training (area under the curve [AUC] 85.9% vs 66.0%; P < 0.001), internal validation (AUC 88.2% vs 67.8%; P < 0.001) and external validation (AUC 83.9% vs 69.4%; P < 0.001) cohorts for csPCa detection. The PBCG RC was prone to overprediction while the PLUM RC was well calibrated. At a threshold probability of 15%, the PLUM RC vs the PBCG RC could avoid 13.8 vs 2.7 biopsies per 100 patients without missing any csPCa. At a cost level of missing 7.5% of csPCa, the PLUM RC could have avoided 41.0% (566/1381) of biopsies compared to 19.1% (264/1381) for the PBCG RC. The PLUM RC compared favourably with the Stanford Prostate Cancer Calculator (SPCC; AUC 84.1% vs 81.1%; P = 0.002) and the MRI-European Randomized Study of Screening for Prostate Cancer (ERSPC) RC (AUC 84.5% vs 82.6%; P = 0.05).
Conclusions: The mpMRI-based PLUM RC significantly outperformed the PBCG RC and compared favourably with other mpMRI-based RCs. A large proportion of biopsies could be avoided using the PLUM RC in shared decision making while maintaining optimal detection of csPCa.
Keywords: #PCSM; #ProstateCancer; #uroonc; diagnostic studies; magnetic resonance imaging; predictive model; prostate biopsy; prostate cancer.
© 2022 The Authors. BJU International published by John Wiley & Sons Ltd on behalf of BJU International.