Herein, we demonstrate the successful construction of two Fe-metalated porous organic polymers having planar (Fe-Tt-POP) and non-planar (Fe-Rb-POP) geometry via the ternary copolymerization strategy for the catalytic oxidative decontamination of different sulfur-based mustard gas simulants (HD). Fe-Tt-POP exhibits superior catalytic performance for the oxidation of thioanisole (TA) in comparison with Fe-Rb-POP. Interestingly, this activity difference can be further explored by in situ operando DRIFTS and DFT computational studies.