A Structurally Characterized Staphylococcus aureus Evolutionary Escape Route from Treatment with the Antibiotic Linezolid

Microbiol Spectr. 2022 Aug 31;10(4):e0058322. doi: 10.1128/spectrum.00583-22. Epub 2022 Jun 23.

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen that presents great health concerns. Treatment requires the use of last-line antibiotics, such as members of the oxazolidinone family, of which linezolid is the first member to see regular use in the clinic. Here, we report a short time scale selection experiment in which strains of MRSA were subjected to linezolid treatment. Clonal isolates which had evolved a linezolid-resistant phenotype were characterized by whole-genome sequencing. Linezolid-resistant mutants were identified which had accumulated mutations in the ribosomal protein uL3. Multiple clones which had two mutations in uL3 exhibited resistance to linezolid, 2-fold higher than the clinical breakpoint. Ribosomes from this strain were isolated and subjected to single-particle cryo-electron microscopic analysis and compared to the ribosomes from the parent strain. We found that the mutations in uL3 lead to a rearrangement of a loop that makes contact with Helix 90, propagating a structural change over 15 Å away. This distal change swings nucleotide U2504 into the binding site of the antibiotic, causing linezolid resistance. IMPORTANCE Antibiotic resistance poses a critical problem to human health and decreases the utility of these lifesaving drugs. Of particular concern is the "superbug" methicillin-resistant Staphylococcus aureus (MRSA), for which treatment of infection requires the use of last-line antibiotics, including linezolid. In this paper, we characterize the atomic rearrangements which the ribosome, the target of linezolid, undergoes during its evolutionary journey toward becoming drug resistant. Using cryo-electron microscopy, we describe a particular molecular mechanism which MRSA uses to become resistant to linezolid.

Keywords: MRSA; Staphylococcus aureus; antibiotic resistance; antibiotics; antimicrobial resistance; cryoEM; drug resistance evolution; electron microscopy; linezolid; ribosomes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use
  • Cryoelectron Microscopy
  • Humans
  • Linezolid / metabolism
  • Linezolid / pharmacology
  • Linezolid / therapeutic use
  • Methicillin-Resistant Staphylococcus aureus* / genetics
  • Microbial Sensitivity Tests
  • Staphylococcal Infections* / drug therapy
  • Staphylococcal Infections* / microbiology
  • Staphylococcus aureus / genetics

Substances

  • Anti-Bacterial Agents
  • Linezolid