Exercise is a key component to health and wellness and is thought to play an important role in brain activity. Changes in brain activity after exercise have been observed through various neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). The precise impact of exercise on brain glucose metabolism (BGluM) is still unclear; however, results from PET studies seem to indicate an increase in regional metabolism in areas related to cognition and memory, direction, drive, motor functions, perception, and somatosensory areas in humans. Using PET and the glucose analog [18F]-Fluorodeoxyglucose (18F-FDG), we assessed the changes in BGluM between sedentary and chronic exercise in rats. Chronic treadmill exercise treatment demonstrated a significant increase in BGluM activity in the following brain regions: the caudate putamen (striatum), external capsule, internal capsule, deep cerebellar white matter, primary auditory cortex, forceps major of the corpus callosum, postsubiculum, subiculum transition area, and the central nucleus of the inferior colliculus. These brain regions are functionally associated with auditory processing, memory, motor function, and motivated behavior. Therefore, chronic daily treadmill running in rats stimulates BGluM in distinct brain regions. This identified functional circuit provides a map of brain regions for future molecular assessment which will help us understand the biomarkers involved in specific brain regions following exercise training, as this is critical in exploring the therapeutic potential of exercise in the treatment of neurodegenerative disease, traumatic brain injury, and addiction.
Keywords: 18F-FDG Fluorodeoxyglucose; Statistical Parametric Mapping; aerobic exercise; glucose metabolism; positron emission tomography; rat.