The Roles of Autophagy, Mitophagy, and the Akt/mTOR Pathway in the Pathogenesis of Chronic Rhinosinusitis with Nasal Polyps

J Immunol Res. 2022 Jun 14:2022:2273121. doi: 10.1155/2022/2273121. eCollection 2022.

Abstract

The pathogenesis of CRSwNP is complex and unclear. CRSwNP is subdivided into two types based on the infiltration of EOSs: eCRSwNP and noeCRSwNP. This study was designed to seek the role of autophagy, mitophagy, and Akt/mTOR pathway in these two subtypes of CRSwNP. This study included 29 patients with CRSwNP and 9 controls. The levels of autophagy, mitophagy, and Akt/mTOR pathway-related proteins in nasal tissues were quantified using western blot analysis. Levels of eosinophilic inflammation-related cytokines in nasal tissues were quantified by enzyme-linked immunosorbent assay. Immunohistochemistry was also used to evaluate autophagy, mitophagy, and Akt/mTOR pathway-related protein expression and distribution in nasal polyps and control tissues. Transmission electron microscopy was used to detect the formation of autophagosomes and mitochondrial autophagosomes. Masson's trichrome and periodic acid-Schiff Alcian blue staining were used to evaluate the severity of tissue remodeling. The expression of p-Akt/Akt and p-mTOR/mTOR was upregulated in patients with eCRSwNP or noeCRSwNP. Beclin 1, PINK1, BNIP3, and FUNDC1 levels were significantly reduced in the nasal polyps of patients with eCRSwNP or noeCRSwNP. Autophagosomes and mitochondrial autophagosomes formed less frequently in the nasal polyps of patients with eCRSwNP or noeCRSwNP. Levels of IL-4, IL-5, IL-13, and ECP and the eotaxins CCL11, CCL24, and CCL26 were elevated in the nasal polyps of patients with eCRSwNP or noeCRSwNP. Tissue remodeling is enhanced in patients with eCRSwNP or noeCRSwNP. The Akt/mTOR pathway, eosinophilic inflammation, and tissue remodeling are activated in the nasal polyps of patients with eCRSwNP or noeCRSwNP. The downregulation of autophagy and mitophagy is also observed in eosinophilic and noneosinophilic nasal polyps. The targeting of mitophagy may provide new therapeutic options for different endotypes of CRSwNP.

MeSH terms

  • Autophagy
  • Chronic Disease
  • Eosinophilia*
  • Humans
  • Inflammation / complications
  • Mitophagy
  • Nasal Polyps* / complications
  • Proto-Oncogene Proteins c-akt
  • Rhinitis* / metabolism
  • Sinusitis* / pathology
  • TOR Serine-Threonine Kinases

Substances

  • MTOR protein, human
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases