Alternative Mechanisms for DNA Engagement by BET Bromodomain-Containing Proteins

Biochemistry. 2022 Jul 5;61(13):1260-1272. doi: 10.1021/acs.biochem.2c00157. Epub 2022 Jun 24.

Abstract

Epigenetic reader domains regulate chromatin structure and modulate gene expression through the recognition of post-translational modifications on histones. Recently, reader domains have also been found to harbor double-stranded (ds) DNA-binding activity, which is as functionally critical as histone association. Here, we explore the dsDNA recognition of the N-terminal bromodomain of the bromodomain and extra-terminal (BET) protein, BRD4. Using protein-observed 19F NMR, 1H-15N HSQC NMR, electrophoretic mobility shift assays (EMSA), and competitive-inhibition assays, we establish the binding surface of dsDNA and find it to be largely overlapping with the acetylated histone (KAc)-binding site. Rather than engaging in electrostatic contacts, we find dsDNA to interact competitively within the KAc-binding pocket. These interactions are distinct from the highly homologous BET bromodomain, BRDT. Nine additional bromodomains have also been characterized for interacting with dsDNA, including tandem BET bromodomains. Together, these studies help establish a binding model for dsDNA interactions with BRD4 bromodomains and elucidate the chromatin-recognition mechanisms of the BRD4 protein for regulating gene expression.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Chromatin
  • DNA
  • Histones* / metabolism
  • Nuclear Proteins* / metabolism
  • Transcription Factors / chemistry

Substances

  • Chromatin
  • Histones
  • Nuclear Proteins
  • Transcription Factors
  • DNA